

Koneru Lakshmaiah Education Foundation (Category -1, Deemed to be University estd. u/s. 3 of the UGC Act, 1956)

Accredited by NAAC as 'A++' ♦Approved by AICTE ♦ ISO 21001:2018 Certified Campus: Green Fields, Vaddeswaram - 522 302, Guntur District, Andhra Pradesh, INDIA. Phone No. +91 8645 - 350 200; www.klef.ac.in; www.klef.edu.in; www.kluniversity.in Admin Off: 29-36-38, Museum Road, Governorpet, Vijayawada - 520 002. Ph: +91 - 866 - 3500122, 2576129

Department of Computer Science and Engineering

Programme: M.Tech - AI & DS

Academic Year: 2022-2023

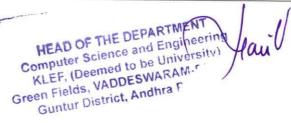
COURSE CODE	COURSE TITLE	CO NO	DESCRIPTION OF THE COURSE OUTCOME
	MATHEMATICAL PROGRAMMING - 1	CO1	Solve linear programing problems in engineering and business decision making problems
		CO2	Make use of Duality and Sensitivity Analysis in Linear Programming models.
22CS5109		CO3	Solve network models and LPP using interior point methods.
		CO4	Apply cutting plane and branch and bound metals to solve discrete optimization problems.
		CO5	Applying the problem solving and optimization models for finding the optimal solution.
	COMPUTATIONAL THINKING FOR OBJECT ORIENTED DESIGN	CO1	Understand basic Concepts of OOP, fundamentals of java and apply the concepts of classes and objects through Java Language, Access control, Overloading.
		CO2	Apply constructors, parameter passing, String, String Buffer and String Tokenizer.
22CS5110		CO3	Inheritance, Packages, Exception Handling
		CO4	Multithreading, Apply collection framework and event driven programming.
		CO5	Apply object-oriented programming concepts to write programs and Analyses requirements and design to implement lab-based project with SDLC in a group of students.
22CS5111	BIG DATA ANALYTICS	CO1	Understand the concepts of big data, Initial exploration of analysis of data and Data visualization.
		CO2	Analyse Initial exploration of data and advanced data analytics by using R
		CO3	Apply advanced algorithms & Statistical modelling for big data using HDFS, HIVE, and PIG.

HEAD OF THE DEPARTMENT Green Fields, VADDESWARAM-522 302.

Guntur District. Andhra Prad Computer Science and Engineering

COURSE CODE	COURSE TITLE	CO NO	DESCRIPTION OF THE COURSE OUTCOME
		C04	Apply advanced SQL functions for in-database analytics by MADlib, Greenplum along with common deliverables of analytics life cycle project
		CO5	Build and Evaluate the Big Data Analytical problems using R, Hadoop, HIVE Programming concepts.
		CO1	Apply Machine Learning Techniques such as PCA, LDA Decision Trees to solve Real World Problems
		CO2	Build Bayesian models for solving Classification and Prediction problems
	MACHINE	CO3	Inspect a movie recommender system
22CS5112	LEARNING & REINFORCEMENT LEARNING	CO4	Apply Neural Network Algorithm techniques to solve Classification, Prediction problems Build a Q-Learning based model for real world problems
		CO5	Implement Machine Learning Techniques using Python Language and develop a small project along with his/her team members.
22IE5149	SEMINAR	CO5	The Seminar has to be taken up by the MTech Second Semester students. It is based on independent research in one of the areas opted by the student. In a Seminar, a student should demonstrate his/her ability in finding out the relevant sources, selection, an illustration of logic, and in organizing the information on the topic, gathering the data, processing, analysing, and summarizing.
	MATHEMATICAL PROGRAMMING - 2	CO1	Solve linear programing problems in engineering and business decision making problems
		CO2	Make use of Duality and Sensitivity Analysis in Linear Programming models.
22CS5113		CO3	Solve network models and LPP using interior point methods.
		CO4	Apply Cutting plane and Branch and Bound methods to solve Discrete optimization problems.
		CO5	Applying the problem solving and optimization models for finding the optimal solution
22CS5114	DATA STRUCTURES & ALGORITHMS	CO1	Apply measures of efficiency to algorithms and Compare various linear data structures like Stack ADT, Queue ADT, Linked lists.
		CO2	Analyse and compare linear data structures and analyse different searching and hashing techniques
		CO3	Analyse and compare various non – linear data structures like Trees and Graphs.
		CO4	Analyse and compare various Shortest Path and Pattern Matching algorithms, to select from a range of possible options, to provide justification for that selection, and to implement the algorithm in a particular context.

HEAD OF THE DEPARTMENT
Computer Science and Engineer
KLEF, (Deemed to be University)
Green Fields, VADDESWARAM-522 302.
Guntur District, Andhra Prader


COURSE CODE	COURSE TITLE	CO NO	DESCRIPTION OF THE COURSE OUTCOME
		CO5	Execute lab experiments and develop a small project along with his/her team members
	ADVANCED DATABASES	CO1	Understand the fundamentals of query optimization and database recovery protocols.
		CO2	Apply emerging database technologies and distributed databases.
22CS5115		CO3	Analyse and Discriminate object oriented and relational database systems.
		C04	Analyse multimedia databases.
		C05	Build and Evaluate advanced database applications
	DEEP LEARNING	CO1	Able to understand and remember the concepts of Perception, Back Propagation, PCA, Singular Value Decomposition
22CS5116		CO2	Able to understand auto encoders- and apply Regularization, Denoising, Sparse, Contractive, Vectoral Representations of words Convolutional Neural Networks, LeNet, AlexNet, ZF-Net, VGGNet, GoogleNet, ResNet Object Detection, RCNN, Fast RCNN, Faster RCNN, YOLO,
		CO3	Apply Long Short Term Memory (LSTM) Restricted Boltzmann Machines, Gibbs sampling for training RBMs, contrastive training RBMs. Deep Dream, GRU, Neural style transfer, Deep learning for computer vision, text and sequences.
		CO4	Build Markov models, Markov networks, Markov chains, Variationalautoencoders, Autoregressive Models: NADE, MADE, PixelRNN, Generative Adversarial Networks (GANs), and DCGAN,
		CO5	Implement basic Neural Networks, optimization algorithms, engine vector decomposition, various types of auto encoders using tensorflow
22IE5250	TERM PAPER	C'05	The term paper has to be taken up by the MTech Second Semester students. It is based on independent research in one of the areas opted by the student. In a term paper, a student should demonstrate his/her ability in finding out the relevant sources, selection, an illustration of logic, and in organizing the information on the topic, gathering the data, processing, analysing, and summarizing.
22IE6050	DISSERTATION	CO5	The Project has to be taken up by the MTech Second Semester students. It is based on independent research in one of the areas opted by the student. In a project research paper, a student should demonstrate his/her ability in finding out the relevant sources, selection, an illustration of logic, and in organizing the information on the topic, gathering the data, processing, analysing, and summarizing.

HEAD OF THE DEPARTMENT
Computer Science and Engineering
KLEF, (Deemed to be University
Green Fields, VADDESWAR
Guntur District, Andhro

COURSE CODE	COURSE TITLE	CO NO	DESCRIPTION OF THE COURSE OUTCOME
22CS51E1	CLOUD INFRASTRUCTURE & SERVICES	CO1	Apply on-demand compute services, Understand IaaS Architectures and Implementation Guidelines.
		CO2	Analyse applications and frameworks for data analysis and Content delivery in the cloud.
		CO3	Analyse Cloud Service availability, Resiliency and Dynamic Scaling
		CO4	Use Networking and Security Services, Automate Cloud Infrastructure, Deployment and Management
		C05	Hands-on Cloud Administration, Implement, Monitor and manage important cloud services and components including IaaS and PaaS
22CS51E2	PARALLEL & DISTRIBUTED COMPUTING	CO1	Analyse Distributed Computations, Graph Algorithms, Causality and Time, Message Ordering and group communication
		CO2	Analyse Coordination Algorithms, Consistency and Replication, Global state and snapshot recording algorithms, Self-stabilization, Fault-Tolerant Message- Passing Distributed Systems
		CO3	Understand parallel algorithm design. Demonstrate the ability to differentiate among parallel architectures and interconnection networks models by analysing parallel sorting algorithms
		CO4	Design and analyse Parallel Computational algorithms
		CO5	Develop Parallel and Distributed computing programs using Hadoop Software tool and MapReduce Frame work
		CO1	Understand image representation and modelling
	CLOUD DEVOPS	CO2	Apply image transformation methods
		CO3	Interpret image processing algorithms
22CS51E3		CO4	Apply and analyse transformation, pose consistency and segmentation algorithms
		CO5	Analyse and implement computer vision techniques by means of Python using the OPENCV library.
		CO1	Understand image representation and modelling
	COMPUTER VISION AND PERCEPTION	CO2	Apply image transformation methods
22CS51F1		CO3	Interpret image processing algorithms
		CO4	Apply and analyse transformation, pose consistency and segmentation algorithms
		CO5	Analyse and implement computer vision techniques by means of Python using the OPENCV library.
	SOFT COMPUTING	CO1	Interpret fuzzy logic system
		CO2	Analyse Artificial Neural Network Models
22CS51F2		CO3	Demonstrate Swarm and Evolutionary Algorithms
		CO4	Illustrate Hybrid Fuzzy-Neural- Evolutionary- Swarm Models

Computer Science and Engineering
KLEF, (Deemed to be Univers)
Green Fields, VADDESWARAM
Guntur District, Andhra F

COURSE CODE	COURSE TITLE	CO NO	DESCRIPTION OF THE COURSE OUTCOME
		CO5	Demonstration of neuro, fuzzy, evolutionary, and swarm algorithms using open source tools
22CS51F3	ARTIFICIAL NEURAL NETWORKS	CO1	Understand and build basic network representations, topologies and models
		CO2	Apply various techniques for training and optimizing neural networks
		CO3	Analyse different techniques related to network stochastics
		CO4	Analyse different techniques related to learning algorithms for neural networks and develop knowledge on emerging software, tools and technologies related to these algorithms
	DATA WAREHOUSING & MINING	CO1	Illustration of Warehouse & Mining, ETL, OLAP & OLTP, Data Cube Operations and Data Warehouse architecture
		CO2	Demonstration of Data Pre-processing through different methods
22CS51G1		CO3	Apply Different Classification Algorithms to Segregate Input data into different class levels and find out Hidden relationship between transactional dataset using Association Rule Mining.
		CO4	Build different Clustering Models using the predefined dataset.
		CO5	Implementation of warehousing and mining algorithms using suitable tools and programming languages
22CS51G2	GRAPH & WEB ANALYTICS	CO1	Understand the impact of big data on graphs, Network Basics and Social Networks
		CO2	Make use of Web Analytics:- Data sources, tools, Web traffic data.
		CO3	Analysing Web Analytics Strategy- website traffic analysis, audience identification and segmentation analysis, Emerging Analytics
		CO4	Compare Email Testing Analysis, competitive Intelligence Analysis, and Social, Mobile, Video Analysis.
		CO5	Implementing Python programing for graph and web analytics
22CS51G3	BIG DATA OPTIMIZATION	CO1	Understand the concepts of big data, Initial exploration of analysis of data and Data visualization.
		CO2	Analyse Initial exploration of data and advanced data analytics by using R
		CO3	Apply advanced algorithms & Statistical modelling for big data using HDFS, HIVE, and PIG.

COURSE CODE	COURSE TITLE	CO NO	DESCRIPTION OF THE COURSE OUTCOME
		CO4	Apply advanced SQL functions for in-database analytics by MADlib, Greenplum along with common deliverables of analytics life cycle project
		CO5	Build and Evaluate the Big Data Analytical problems using R, Hadoop, HIVE Programming concepts.
	COCNUMINA	CO1	Understand cognitive computing is, and how it differs from traditional approaches
		CO2	Applying the primary tools associated with cognitive computing
22CS52H1	COGNITIVE COMPUTING	CO3	Develop a project that leverages cognitive computing
	COMPOTING	CO4	Analyse and discuss the business implications of cognitive computing
		CO5	Able to implement cognitive computing programs using IBM Watson
	NATURAL LANGUAGE PROCESSING	CO1	Understand approaches to syntax and semantics in NLP
22CS52H2		CO2	Apply the statistical estimation and statistical alignment models
		CO3	Analyse grammar formalism and context free grammars
		CO4	Apply Rule based Techniques, Statistical Machine translation (SMT), word alignment
		CO5	Inspect and Evaluate Language Processing Methods using python
	EDGE COMPUTING	CO1	Define the Edge/Fog Computing and infer the opportunities and challenges
22CS52H3		CO2	Examine the Architecture of Edge Computing and explore the issues that are being addressed by the Industry
		CO3	Determine the Middleware needed for Edge Computing and its Security Requirements
		CO4	Using the Edge/Fog Computing in various real-time projects
		CO5	Implement the programming on Edge and Fog computing

Academic Professor I/C

HOD-CSE
HEAD OF THE DEPARTMENT
Computer Science and Engineering
KLEF, (Deemed to be University
Green Fields, VADDESWARAM
Guntur District, Andhra F